Light Trapping in Solar Cells: Can Periodic Beat Random?
نویسندگان
چکیده
منابع مشابه
Light trapping in solar cells: can periodic beat random?
Theory predicts that periodic photonic nanostructures should outperform their random counterparts in trapping light in solar cells. However, the current certified world-record conversion efficiency for amorphous silicon thin-film solar cells, which strongly rely on light trapping, was achieved on the random pyramidal morphology of transparent zinc oxide electrodes. Based on insights from wavegu...
متن کاملLight-trapping in dye-sensitized solar cells
We demonstrate numerically that photonic crystal dye-sensitized solar cells (DSSCs) can provide at least a factor of one-third enhancement in solar light absorption and power conversion efficiency relative to their conventional counterparts. Our design consists of a lattice of modulated-diameter TiO2 nanotubes filled with TiO2 nanoparticles and interstitial regions filled with electrolyte. This...
متن کاملLight trapping in silicon nanowire solar cells.
Thin-film structures can reduce the cost of solar power by using inexpensive substrates and a lower quantity and quality of semiconductor material. However, the resulting short optical path length and minority carrier diffusion length necessitates either a high absorption coefficient or excellent light trapping. Semiconducting nanowire arrays have already been shown to have low reflective losse...
متن کاملNanophotonic light trapping in solar cells
Related Articles Nanophotonic light trapping in solar cells App. Phys. Rev. 2012, 11 (2012) Minimizing reflection losses from metallic electrodes and enhancing photovoltaic performance using the Simicrograting solar cell with vertical sidewall electrodes Appl. Phys. Lett. 101, 103902 (2012) Comparison of periodic light-trapping structures in thin crystalline silicon solar cells J. Appl. Phys. 1...
متن کاملLight trapping in amorphous silicon solar cells
In order to simultaneously decrease the production costs of thin film silicon solar cells and obtain higher performances, the authors have studied the possibility to increase the light trapping effect within thin film silicon solar cells deposited on flexible plastic substrates. In this context, different nano-structure shapes useable for the back contacts of amorphous silicon solar cells on pl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: ACS Nano
سال: 2012
ISSN: 1936-0851,1936-086X
DOI: 10.1021/nn300287j